
Building a Cormas model from scratch step by step: the ECEC model

1

CIRAD, GREEN Research Unit: http://www.cirad.fr/ur/green_en

CORMAS (2012 release)
Common-pool Resources
and Multi-Agents Systems

Building a Cormas model from scratch step by step:

the ECEC model

April 2012

Authors: Pierre Bommel, Christophe Le Page, Nicolas Bécu & François Bousquet

http://www.cirad.fr/ur/green_en

Building a Cormas model from scratch step by step: the ECEC model

2

Table of contents

1. Model description .. 4

1.1. The Plants ... 4

1.2. The Foragers .. 5

1.3. Model formalism in UML .. 5

2. Adapting ECEC to Cormas framework .. 8

3. Implementing ECEC on Cormas ... 10

3.1. Opening Cormas .. 10

3.2. Creating a new Cormas model .. 10

3.3. Defining a spatial entity: the “VegetationUnit” .. 11

3.4. Designing the VegetationUnit behavior ... 13

3.5. Designing an agent foraging the resource .. 18

3.6. Setting the attributes of the foragers ... 19

3.7. Create two sub-classes of Forager ... 20

3.8. Coding the biological methods of Forager ... 22

3.9. Coding the “step” method of the forager agent .. 23

4. Designing methods to observe the entities 23

4.1. Assigning a green intensity according to the energy level of the plant 23

4.2. Assigning a color to distinguish foragers ... 26

5. Designing control methods for the scheduling of the simulation
experiments ... 29

5.1. Create attribute agentsInitialNumber ... 29

5.2. Write a method to create the forager agents .. 30

Building a Cormas model from scratch step by step: the ECEC model

3

5.3. Write (in the “init” protocol) 3 different methods to be used as initial situations for
simulation experiments .. 32

5.4. Write (in the “control” protocol) a step method to be executed at each time-step of
simulation .. 33

6. Designing “probes” to record the variations of markers 34

6.1. Open the “probes” definition window from the main Cormas interface 34

6.2. Add probes based on attributes of the model (global level) .. 34

6.3. Write the code for the first one: a cumulative value over a collection ... 35

6.4. Define 2 other probes: the number of restrained and unrestrained foragers 36

7. Simulating the model .. 36

8. Saving, loading and versioning the model 39

8.1. Saving and versioning ... 39

8.2. Loading the model .. 40

9. Playing with the model ... 40

9.1. Changing the parameters’ values ... 41

9.2. Manipulating the agents on the grid ... 42

9.3. Executable activity diagram editor to modify the agents’ behavior .. 47

10. Analyzing the model ... 53

10.1. Simple stochastic analysis .. 53

10.2. Individual signature of parameters .. 55

10.3. Sorting the sensitivity of the model to parameters ... 58

Building a Cormas model from scratch step by step: the ECEC model

4

The model we present here and that you will build, is inspired from a paper by Pepper and

Smuts, "Evolution of Cooperation in an Ecological Context":

Pepper, J.W. and B.B. Smuts. 2000. "The evolution of cooperation in an ecological context: an agent-based

model". Pp. 45-76 in T.A. Kohler and G.J. Gumerman, eds. Dynamics of human and primate societies: agent-

based modeling of social and spatial processes. Oxford University Press, Oxford.

Pepper, J.W. and B.B. Smuts. 2002. "Assortment through Environmental Feedback". American Naturalist, 160:

205-213

The model consists of a two dimensional grid, wrapped in both axes to avoid edge effects. It

contains two kinds of entities: plants and foragers. The main idea is the study of the survival

of two populations of agents that depends on the spatial configuration.

This ECEC model can be found on the Cormas web site:

http://cormas.cirad.fr/en/applica/ecec.htm

1. Model description

The model contains two kinds of entities: plants and foragers.

1.1. The Plants

The Plants are created only once and have a fixed location. They do not move, die, or

reproduce. A plant‟s only “behaviors” is to grow (and be eaten by foragers). The plants vary

only in their biomass, which represents the amount of food energy available to foragers. At

each time unit, this biomass level increases according to a logistic growth curve:

Figure 1: Logistic equation and its sigmoid curves

http://cormas.cirad.fr/en/applica/ecec.htm

Building a Cormas model from scratch step by step: the ECEC model

5

1.2. The Foragers

Each step, the Foragers burn energy according to their catabolic rate. This rate is the same for

all foragers. It is fixed to 2 units of energy per time period.

A forager feeds on the plant in its current location if there is one. It increases its own energy

level by reducing the same amount of the plant. Foragers are of two types that differs in their

feeding behavior:

When “Restrained” foragers eat, they take only 50% of the plant‟s energy.

In contrast, “Unrestrained” foragers eat 99% of the plant. This harvest rate is less than 100%

so that plants can continue to grow after being fed on, rather than being permanently

destroyed.

The Foragers do not change their feeding behavior type and their offspring keep the same

heritable traits.

1.2.1. Rules for Foragers’ Movements

Foragers examine their current location and around. From those not occupied by another

forager, they choose the one containing the plant with the highest energy.

If the chosen plant would yield enough food to meet their catabolic rate they move there. If

not, they move instead to a randomly chosen adjacent free place (not occupied by another

forager). This movement rule leads to the emigration of foragers from depleted patches, and

simulates the behavior of individuals exploiting local food sources while they last, but

migrating rather than starving in an inadequate food patch.

1.2.2. Other Biological Functions of Foragers

Foragers loose energy (catabolic rate, 2 points) regardless of whether or not they move.

If their energy level reaches zero, they die. But they do not have maximum life spans.

If a forager‟s energy level reaches an upper fertility threshold (fixed to 100), it reproduces

asexually, creating an offspring with the same heritable traits as itself (e.g., feeding strategy).

At the same time the parent‟s energy level is reduced by the offspring‟s initial energy (50).

Newborn offspring occupy the nearest free place to their parent.

1.3. Model formalism in UML

1.3.1. Structure of ECEC

The following Class diagram presents the structure of the model.

Building a Cormas model from scratch step by step: the ECEC model

6

The underlined attributes are called “Class variables”: their values are equal for all instances.

For example, the catabolicRate class variable means that its value (2 units of energy) is

identical for every foragers whatever their strategy (restrained or unrestrained).

1.3.2. Dynamics’ description of ECEC

The following Sequence Diagram presents the main time step of ECEC. This is a DTSS

(Discrete Time System Specification, according to Zeigler et al. 2000
1
 classification), meaning

that, on the contrary of DEVS (Discrete Event System Specification), the evolution of the

simulation is sliced in time steps.

As the model is purely theoretical, the step duration is not defined. In one step, all entities

should evolve: the plants increase their biomass (according to Logistic equation), and the

foragers perform their biological functions. In order not to give always preference to the same

agents (the privilege to choose first the best plant), the list of the foragers is randomly mixed

at each step.

1
 Zeigler, B.P., Praehofer, H. et Kim, T.G., 2000. (2nd ed.). Theory of modeling and simulation:

integrating discrete event and continuous, Academic Press, New York

Figure 2: UML Class diagram of ECEC structure

Building a Cormas model from scratch step by step: the ECEC model

7

At each step, a forager performs its activities:

Figure 3: The main step Sequence diagram

Figure 4: Activity diagram of a Forager

Building a Cormas model from scratch step by step: the ECEC model

8

The follow Sequence diagram shows the “reproduce” behavior of a forager.

2. Adapting ECEC to Cormas framework

The following diagram is an adaptation of the main class diagram (in design stage, see Figure

2) to fit the Cormas framework.

ECEC defines 3 kinds of entities: Plants, RestrainedForagers and UnrestrainedForagers.

As the plants are spatially located and can‟t move, we aggregated the plant with the spatial

unit in one entity. Thus, a VegetationUnit is a kind of SpatialEntityCell with additional

attribute: “biomass”.

As the foragers are the located agents of ECEC, the Forager class must inherit from

AgentLocation abilities, in order to enable the agents to move and to perceive their

neighborhoods.

Figure 5: Sequence diagram of Reproduction process

Building a Cormas model from scratch step by step: the ECEC model

9

Figure 6: UML class diagram, adapted to Cormas (implementation stage)

Building a Cormas model from scratch step by step: the ECEC model

10

3. Implementing ECEC on Cormas

As it is based on Smalltalk, an interpreted language, Cormas is a cross-platform software that

can directly run on any platform without special preparation. Thus Cormas and your model

should run on Microsoft Windows, Linux and Mac OS X. You can download the new release

here: http://cormas.cirad.fr/en/outil/download/newRelease.htm

3.1. Opening Cormas

From the main interface of VisualWorks, select “Cormas” from the “Tools” menu:

Note that Cormas2012 does not propose the French version anymore.

While VisualWorks is minimized (but not closed), Cormas interface appears as follow:

Figure 7: Cormas main interface

3.2. Creating a new Cormas model

From Cormas menu, select File  New

http://cormas.cirad.fr/en/outil/download/newRelease.htm

Building a Cormas model from scratch step by step: the ECEC model

11

Thus, write the model‟ name: ECEC. Note that a model name must start with uppercase

character.

After the click on “OK” button, a Comments interface pops-up. You can enter the authors‟

name and e-mails and write some comments on the purpose of this model, as following:

Then click the “OK” button. The next steps consist in programming the model.

3.3. Defining a spatial entity: the “VegetationUnit”

First of all, to define the entities, you must open the “entities” window: Select “Program” 

“The class for each entity” on the main menu of the Cormas window:

Building a Cormas model from scratch step by step: the ECEC model

12

Figure 8: Cormas programming menu

Then the “entities” interface opens:

3 kinds of entities can be defined in Cormas: the spatial, social and passive (or other) entities.

To create a new kind of spatial entity (VegetationUnit), click on the [+] button near “spatial”.

Then enter VegetationUnit in the input field and select “Element” as our class is a kind of

SpatialEntityCell, the basic entity of the space:

Building a Cormas model from scratch step by step: the ECEC model

13

Thus, the VegetationUnit class is created.

3.4. Designing the VegetationUnit behavior

3.4.1. Setting the parameters of a logistic growth

The logistic equation needs 2 parameters: the carrying capacity “K” and the growth rate “r”.

As the values of these parameters are equals for each Plant instances, they are defined as class

variables.

3.4.1.1. Create the K and r class variables

After selecting the VegetationUnit class, right-click on it to get a popup menu where you can

Edit, Rename or Remove the selected class. In Edit sub-menu, select “Attributes”:

Figure 9: 'Entities' interface with contextual menu

A new window opens to create and set attributes:

)
K

x
(1rxxx t

tt1t




Building a Cormas model from scratch step by step: the ECEC model

14

Click on [+] button corresponding for Class variable, then enter K as new attribute name.

A default value chooser pops up. It is useful to set the default value of an attribute and to

automatically create its accessors (public methods to read or change its value).

Building a Cormas model from scratch step by step: the ECEC model

15

As the carrying capacity of the plants is set to 10 (see fig. 1), enter 10 in the input field. You

can deselect the “Notify observers when changed” button as K won‟t change and is not

observed during simulations.

Repeat this process for r class variable, with 0.2 as value.

3.4.1.2. Create the biomass attribute

Similarly, click on [+] button corresponding for Attribute (bottom left), then enter biomass as

new attribute name. The initial value of each instance of VegetationUnit cannot be defined

here as it will depend on the way to initiate the landscape. Some cells may have very low

biomass when other may have higher level of biomass. But, for sure, each one will have a

number. So, let put 0 as default value.

As the biomass of the cells will be observed, let the “Notify observers when changed” button

selected to show the vegetation changes during the simulations.

Thus, you should get the following window:

You can change the default value of the attribute from this interface. To change the value of K

for example, select the target cell (10) and enter another number. Then click on “Save”

button.

Building a Cormas model from scratch step by step: the ECEC model

16

You can also rename or remove attributes by right clicking on a row and by selecting “rename

attribute” or “remove attribute” in the pop-up menu.

Now, close the Attribute window.

3.4.2. Write a logistic growth method in a new protocol

To code a method, you need to open a browser on the VegetationUnit class. For that, double

click on VegetationUnit name of the „entities‟ interface (or right click on it, Edit  Methods).

Figure 10: A browser of Smalltalk code

By default, the bottom panel displays the code that defines the class. By selecting the biomass

method (into the methods panel), the bottom panel will display the code of this accessor

method:

Building a Cormas model from scratch step by step: the ECEC model

17

#biomass and #biomass: are two methods to read and set the biomass value. They have been

automatically generated by Cormas. Both methods are stored into the “accessing” protocol.

But a protocol is just a way to organize the methods. To create a new protocol, right click on

the "protocol" panel and select "new". Then write growth as protocol name.

To create a new method into the "growth" protocol, remove the text on the "source" panel

(bottom) and write your own method on it:

Figure 11: Creating a new protocol

Enter the following code:

logisticGrowth

 self biomass: (Cormas logisticGrowth: self biomass r: self class r K: self class K)

Then accept this code: right button  Accept or Ctrl S.

Building a Cormas model from scratch step by step: the ECEC model

18

The logisticGrowth method uses a static method from Cormas class (#logisticGrowth:r:K:).

3.4.3. Write the basic step method in the “control” protocol

In the same way as previously, create a new protocol called control and the #step method in

it.

3.4.4. Write a random init method in the “init” protocol

In the same way as previously, create a new protocol called init and the #initRandomBiomass

method in it.

initRandomBiomass

 "Set the initial value of biomass, between]0 ; 1] ."

 self biomass: Cormas random

You can now close the browser of "VegetationUnit".

3.5. Designing an agent foraging the resource

Let us define the Forager agent as a kind of situated agent. On the second panel of „entities‟

interface, click on [+] button, near “social”.

Building a Cormas model from scratch step by step: the ECEC model

19

As the foragers are located, the Forager class must inherit from AgentLocation. Thus, select

the “Location” button. When clicking “OK”, a message pops up, asking if Forager is abstract:

As we will redefine 2 sub-classes, click on “Yes”.

Then, as you can see in a new browser, Forager inherits from AgentLocation.

3.6. Setting the attributes of the foragers

The values of these parameters are equals for each agent. We can define them as class

variables as describe in the class diagram (Figure 2).

3.6.1. Create the new class variables: fertilityThreshold, catabolicRate
and harvestRate

This is the same procedure as for VegetationUnit attributes: right click on Forager to display

the contextual menu (cf. Figure 9). Select Edit  Attributes

By clicking on the [+] class variable button (bottom right), create the class variable

fertilityThreshold with 100 as default value (without notification) and the metabolicRate with

2 (without notification). As harvestRate has no value assigned at this level, just add this class

variable without value (click on “without value” button).

3.6.2. Add the “energy” attribute

Proceed like in section 3.4.1.2 (Create the biomass attribute): click on [+] button

corresponding for Attribute (bottom left), then enter energy as new attribute name. The initial

value of each instance is set to 50 (so, put 50 as default value).

Building a Cormas model from scratch step by step: the ECEC model

20

As the energy of the foragers may be observed (display a color for energy level or display the

value near each agent on the grid), select the “Notify observers when changed” button. Thus,

you should get the following window:

Now that all parameters have been defined, close this window.

3.7. Create two sub-classes of Forager

As designed in the class diagram, Forager is specialized in two sub-classes: Restrained and

Unrestrained. Because Forager is a class of our model, there is another procedure to create

specialized classes: in “entities” interface, select Forager then right click on it and select

“specialize”.

Figure 12: Create a subclass by specializing a super class of the model

Building a Cormas model from scratch step by step: the ECEC model

21

Then, enter the new class name: Restrained. Because there will be instances of restrained

foragers, this class is not abstract: click “No” to the question “is Restrained an Abstract

class?”. Repeat this procedure for Unrestrained.

Now, we must define the value of harvestRate for each subclass of Forager. To do that,

reopen the attribute editor for each one. Select a subclass (Restrained for instance), edit the

contextual menu with right click  Edit  Attributes:

Then, at the row corresponding to harvestRate, change the nil value for 0.5.

Then, click on “Save” button. By clicking on “Yes” button of the following question…

Building a Cormas model from scratch step by step: the ECEC model

22

…Cormas will redefine the getter accessor for harvestRate with 0.5 as default value.

Close the Attributes window and repeat this procedure for Unrestrained by setting the

default value to 0.99.

3.8. Coding the biological methods of Forager

Similarly to the Logistic growth of VegetationUnit, we have to code the biological methods of

the foragers. As described in the main class diagram, these methods are equals for both

subtypes of foragers. Thus, they have to be defined at Forager level.

Edit the Forager class and create “biology” protocol (see chapter 3.4.2, Write a logistic

growth method in a new protocol, page 16). Then write the following methods.

Building a Cormas model from scratch step by step: the ECEC model

23

3.9. Coding the “step” method of the forager agent

As #step is already defined into Agent class, the new #step is automatically moved into the

“* control” protocol.

Due to the new diagram editor, there are two ways to design the main behavior: by coding or

by creating an activity diagram. The diagram editor will be presented later (chap. 9.3, p. 47).

4. Designing methods to observe the entities

4.1. Assigning a green intensity according to the energy level of the plant

4.1.1. Add a “point of view” method named “povBiomass”

A “Point of View” setter (PoV Setter) can be opened by two ways: from the Cormas menu,

select Programming  the observer  Space_and_entities, or from the Entities interface,

right click on a class  Edit  PoV_setter.

Building a Cormas model from scratch step by step: the ECEC model

24

By default, #VegetationUnit (a symbol associated to the class name) has been created by

Cormas. You can choose a color for this name for future use, even if we won‟t use it for the

ECEC model. For that, select the #VegetationUnit symbol, click on the desired color and

click on “Apply” button.

4.1.2. Write the code of the “povBiomass” method

A “pov” method has to return a symbol, which needs to be associated to corresponding color

via the palette tool. Here, as we want a gradient color related to the biomass of a cell, we

won‟t use the classical way of writing “pov” methods, but a “pov” method that returns

directly a color value. The Entity class provides a generic method that relates the brightness of

a base color to the value of a quantitative attribute: #povAttribute:min:max:color:.

But first of all, let‟s create a new PoV method, that, when selected, will display a gradient of

green color according to the biomass of each cell. On “PoV definition”, right-click and write

“povBiomass”:

Building a Cormas model from scratch step by step: the ECEC model

25

After clicking on OK, a new browser pops up:

The first argument helps to determine the attribute of the cell for which the color gradient is

set. Second and third arguments are to set the limits of the gradient. We have chosen 0 for the

minimum (a white color) and K for the darkest green. The last argument determines the color.

Building a Cormas model from scratch step by step: the ECEC model

26

4.1.3. Adjust the write-access method of all the attributes involved in
“pov” methods

The only attribute involved in a “pov” method of the VegetationUnit entity is “biomass”. To

ensure that the visualization will be updated each time a new value of biomass will be

assigned to a plant, the “self changed” instruction must be present in the write-access method:

Because we have chosen to “Notify observers when changed”, when the biomass attribute was

created, this instruction has already been added by Cormas:

To automatically add (or remove) this instruction for an attribute, open the attribute setter

(Figure 9, p. 13, right-click on a class  Edit  Attributes), then select the row of the target

attribute and select “Notify observers when changed” while right-clicking on it.

4.2. Assigning a color to distinguish foragers

4.2.1. Associate a “pov” each type of Forager

Reopen a PoV Setter (or select it) and select the “Restrained” item at the right of the window.

Building a Cormas model from scratch step by step: the ECEC model

27

As the #povClassName method (already defined for Entity) returns the name of the class, thus

#Restrained symbol is already created, and the default image associated to this symbol is a

hexagon. You can choose the color of this hexagon by clicking on the color setter, then

“Apply”. You can also design a shape for the Restrained foragers. For that, click on the

“Vectorial” button into the “Create the image” box, then select the initial shape (one of the 4

buttons on the top) and modify it with your mouse:

Building a Cormas model from scratch step by step: the ECEC model

28

When it is done, click on “OK”. You can then

 resize the image,

 change the color

 define its position on the cell.

After a click on “Apply” (don‟t forget !), repeat the procedure for the Unrestrained forager.

You may also use bitmap images for the agents, using the bitmap library or

the Image editor .

By clicking on the “Image Editor” button, a new window pops up:

Building a Cormas model from scratch step by step: the ECEC model

29

After having clicked on the “Capture” button, you can click and drag your mousse on an

image displayed by your screen (note that you must move the mouse from the top-left to the

bottom-right position). When it‟s done, click on the “Install” button.

4.2.2. Add the symbols that may be returned by the “pov” methods

In the “Symbols” window, you need to add all the possible symbols that may be returned by

any “pov” methods of the selected entity. To each added symbol, associate a color and a

shape. Use the palette or the Red, Green and Blue sliders to choose a color.

For the Unrestrained forager, you may decide to have the same shape than for the

Restrained. For that, right-click on the “Associated symbols” box and select “Add – same

shape as”  Restrained  Restrained, then type Unrestrained for the new symbol. You can

then change the color, resize the figure or even modify it. Do not forget to apply after your

modifications.

5. Designing control methods for the scheduling of
the simulation experiments

Now it is time to design the model scheduler that is in charge of organizing the simulations,

that is to say,

to initialize a simulation by creating the virtual world: to instantiate the agents and the

environment and to set the links between the entities,

to schedule the entities by sending a step to each one. (Cormas is oriented towards step-by-

step simulations, but it s possible to program discrete events simulations). For these reasons,

the scheduler may be seen as an orchestra conductor.

In Cormas, the scheduler class is the main class of your model, i.e. the ECEC class.

5.1. Create attribute agentsInitialNumber

Create the agentsInitialNumber attributes that allow the user to choose the initial number of

each type of Foragers.

Building a Cormas model from scratch step by step: the ECEC model

30

Open the Attributes editor: Cormas main menu  Programming  The simulation

organization  The initial instantiation  Edit attributes. Then click on the “+” button at the

right bottom (for „Attribute‟), enter restrainedInitialNumber as new attribute name and set the

initial value equals to 10:

Repeat this procedure for unrestrainedInitialNumber, then close the attributes editor.

5.2. Write a method to create the forager agents

Now, let‟s write a method to create 10 Restrained and 10 Unrestrained foragers. As this new

method is not an initialization method (callable from the simulation interface) but just a part

of the simulation (we also need to initialize the space and the plants), we need to create a new

protocol (“entities creation”) different.

Open a code browser on ECEC: Cormas main menu  Programming  The simulation

organization  The initial instantiation  Edit initialization.

By default, the browser opens on the init protocol and targets the #init method of ECEC (4

protocols have been automatically generated by Cormas: accessing, control, init and instance-

creation). Click on the instance-creation protocol, then on #initAgents method:

Building a Cormas model from scratch step by step: the ECEC model

31

Re-define the #initAgents methods: remove the comments “To be completed” then write:

self createN: self restrainedInitialNumber randomlyLocatedAloneEntities: Restrained.

And a similar line instruction for the Unrestrained. Then Accept (Ctrl S). Thus, the new

#initAgents method is saved:

Explanation: this method instantiates 10 Restrained and 10 Unrestrained foragers. It uses the

#createN:randomlyLocatedAloneEntities: method that is already defined into the ECEC super

class: CormasModel (you can click on this class in the first panel of the browser and navigate

in it ; this method is into the + instance creation - agents & objects protocol).

Building a Cormas model from scratch step by step: the ECEC model

32

This method expects 2 arguments: a number (for the number of new entities to be created) and

a class (in our case, Restrained or Unrestrained). But the comments should be explicit:

"Return a collection of aNumber of entities of aClass for wich the 'init' method has been send.

The new entities are randomly located on the free cells of the grid.

ex: self createN: 10 randomlyLocatedAgents: Predator"

5.3. Write (in the “init” protocol) 3 different methods to be used as initial

situations for simulation experiments

Here, we will write the methods that will be available for the user to initialize a simulation.

The first one (#noForagers) will be useful to run a simulation without forager, just to show an

increase of the vegetation. The second one (#homogeneousEnv) will be the basic initial state

where the agents (10 and 10) are distributed on an homogeneous environment (the initial

biomass of the plant is set randomly). For the last initial state, the environment is fragmented

as patches of vegetation. You can load predefined grids or create a specific one.

5.3.1. Load predefined environments

To load these 3 environments, you need to download the maps.zip file on Cormas web site:

http://cormas.cirad.fr/logiciel/maps.zip

Unzip maps.zip into Models/ECEC/ in order to get the following hierarchy:

 cormas/Models/ECEC/maps :

Then write the 3 initialization‟ methods. As we want them to be displayed into the simulation‟

interface of Cormas, they have to be written into the init protocol. So, select the init protocol

of the ECEC Browser, select the #init method, then remove the text on the "source" panel

(bottom) and write your own method on it (see previous explanation chapter 3.4.2, p. 16).

http://cormas.cirad.fr/logiciel/maps.zip

Building a Cormas model from scratch step by step: the ECEC model

33

Each time you want to write a new method, select another method of the desired protocol,

remove the text on the "source" panel, write your own method on it and Accept. Don‟t be

troubled, the previous method is still available. That the reason why the default #init method

is still present. But as it is useless, it can be removed: select it, then right click and

“Remove…”.

Remarque: As we always want to display the #povBiomass of the cells, we can also use:

 self spaceModel loadEnvironmentFromFile: 'fragmented.env' withPov: #povBiomass.

5.3.2. Create a specific grid

We can also define the grid size programmatically, then use the #initRandomBiomass method

we have already create previously to set the biomass of each cell.

The new grid can be saved as .env file (see chapter 9.2.3, p. 44)

5.4. Write (in the “control” protocol) a step method to be executed at each

time-step of simulation

If the ECEC browser is still opened, select the control protocol and the #step method

(otherwise reopen a browser from Cormas menu: Programming  The simulation

organization  The scheduler  Edit steps). Then write the following code:

Building a Cormas model from scratch step by step: the ECEC model

34

6. Designing “probes” to record the variations of
markers

6.1. Open the “probes” definition window from the main Cormas interface

6.2. Add probes based on attributes of the model (global level)

In the “Probes” interface, select Global (as the probe aims at plotting the total biomass of the

grid), right-click on the right panel to open the menu, then: Add  a probe on attribute… 

theVegetationUnits.

Building a Cormas model from scratch step by step: the ECEC model

35

As theVegetationUnits is not a number (but a list of cellules), answer No to the question “Are

you sure this is a number?”.

6.3. Write the code for the first one: a cumulative value over a collection

Replace the code automatically created for #vegetationBiomass…

vegetationBiomass

"modify this instruction to calculate the number to be recorded"

ŝelf theVegetationUnits messageX

… with the following code:

Building a Cormas model from scratch step by step: the ECEC model

36

Accept then close the ECEC browser.

6.4. Define 2 other probes: the number of restrained and unrestrained

foragers

As previously, in the “Probes” interface, select Global, right-click on the right panel to open

the menu, then: Add  a probe on attribute…  theRestraineds (or theUnrestraineds).

As theRestraineds is not a number (but a list of Restrained), answer No to the question “Are

you sure this is a number?”, then enter restrainedSize as probe name. Modify the code by

changing messageX by size:

7. Simulating the model

To open the simulation interface, click on : Simulation  Simulation Interface.

Building a Cormas model from scratch step by step: the ECEC model

37

Click on the “Initialize” button to prepare a simulation:

Choose one initialization method and one control method and select the probes you would

like to see, then Apply.

As our model is spatialized, we may display the environment by opening the spatial grid.

From Cormas menu, click on : Visualisation  Space

In order to see the vegetation state and also the foragers on the map, click on the grid menu

and select PoV  VegetationUnit  povBiomass. Then again: PoV  Forager 

povClassName.

Building a Cormas model from scratch step by step: the ECEC model

38

You can now simulate by clicking on the “Step” button or on the “Run” button once you have

entered a duration value.

In order to see the resulting curves of the simulation, click on Probes from Cormas menu

 Visualisation  Probes. Then click on the probe you want to see. If you want to see

several probes at once, use the Ctrl key.

Figure 13: The first ECEC output

Building a Cormas model from scratch step by step: the ECEC model

39

The color of the curves may be changed to be closer to the colors of the entities. For that,

right-click on the “Chart names” list or menu  option  change line color… Then we can

change the color with the color chooser:

Note that the color settings are saved into ECEC for next visualizations.

8. Saving, loading and versioning the model

8.1. Saving and versioning

It is important to save regularly your model, as anything may happen… On Cormas main

menu, select: File  Save. Save it as ECEC.pcl (as proposed), but you can also choose

another name if you want to have several versions of your model. Before to save, Cormas will

ask if you want to add some comments of this version:

Building a Cormas model from scratch step by step: the ECEC model

40

Enter some comments (like “First full version” for example) and click on “Add Comment”

button.

The Saving procedure has automatically creates an “ECEC” folder, under “cormas/models”,

and the model is saved on the disk as a file with .PCL extension (Package). You may also use

the old process of saving models with .ST file. For that, select File  Convert  Save as ST

You can see the history of your model by selecting the Cormas menu: Tools  Display

model’ versions

8.2. Loading the model

Then choose the version you want to load.

9. Playing with the model

Cormas has also been improved in order to facilitate the interactions with the simulation. The

purpose is to easily modify the values of the parameters, to manipulate the agents on the grid

and even to modify their behavior without coding.

Building a Cormas model from scratch step by step: the ECEC model

41

9.1. Changing the parameters’ values

With this new version, it is simpler to change the value of a parameter. All parameters can be

displayed in an interactive table. To open it, click on Cormas menu  Simulation  Display

Parameters:

The table only shows the simple parameters (called literals) of numerical, string or boolean

types:

To change a value, select it, enter the new value and click on “Apply new values” button. For

example, to start a simulation with 50 Restrained and 3 Unrestrained foragers, enter 50 and

3 respectively in the restrainedInitialNumber and unrestrainedInitialNumber cells, then

“Apply”.

Building a Cormas model from scratch step by step: the ECEC model

42

When initializing the simulation, 53 agents

are created.

To facilitate the visualization, the points of

view of the Restrained is set to povId and to

povClassName for the Unrestrained.

Note that in terms of result, this new initial

state does not prevent the population of

restrained foragers to collapse.

If you run another simulation, the modified parameters will be used again (i.e. 50 Restrained

and 3 Unrestrained). To come back to the default values (10 and 10), click on the “Back to the

Default Values” button of the Parameters interface.

But if the modified parameters seem better for future use of the model, you can save them by

clicking on the “Save as Default Values” button. Thus, the code of the model will be modified

to store these new values.

9.2. Manipulating the agents on the grid

9.2.1. Creating new foragers

By clicking on the + button of the grid, you can instantiate new agents.

Building a Cormas model from scratch step by step: the ECEC model

43

Set the entity type to be created and click on “Create” button. Then, each time you will click

on the grid, a new forager will be instantiated on the target cell.

If you want to limit the number of new foragers, enter the limit number on the “X” input box

before to click on “Create”.

9.2.2. Moving and sending operation to the agents

By clicking on the hand button of the grid , you can manipulate the agents. Select the

entity type to manipulate and OK.

Thus, by right-clicking on a forager, he will perform the operation that you have select from

the contextual menu. You can also move this forager where you want with a drag and drop. If

“Any kind” have been selected, then you can move any kind of located entity or send a

method to this entity (the contextual menu adapts itself to the clicked figure.

To be displayed on the contextual menu, Cormas lists all the methods of your model

excluding those of „pov‟, „probes‟ and „init‟ protocol. It also add to this list the methods of the

super-class that belong to the protocols starting with „* …‟.

But you may customize your own contextual menu, by redefining the #methodsForControl (at

class level). This method can be overwritten as following:

Building a Cormas model from scratch step by step: the ECEC model

44

9.2.3. Changing the environment

From the grid menu, you can:

 set the environment as torroidal or closed grid: Environment  Modify  Grid

boundaries  Closed

 change the shape of the cells (and their connectivity): Environment  Modify  Cell

shape  Hexagonal

You can also set a new spatial configuration by changing the biomass attribute value and

designing with the mouse. From the grid menu, Tools  Click to…  Change attribute 

biomass

Then enter 0 and click on the cells (or drag).

Building a Cormas model from scratch step by step: the ECEC model

45

Thus you can save this new environment for future simulations: grid menu  Environment 

Save  Env type , select biomass and enter the fine name.

9.2.4. Other display options

Zoom: You can zoom on a part of the grid by selecting the 4
th

 button , then by doing a

drag on the region of the grid you want to zoom in.

Display information: You can display some information near each entity by selecting the

menu Display  info  Forager  info_ID (for example):

Building a Cormas model from scratch step by step: the ECEC model

46

This option is also available from the contextual menu of an entity.

The default information available is the name of the class and the identifier (id) of the forager.

But this is easily add new information such as the energy level of each agent. For that, open

the PoV Setter (see 4.1.1, p. 23), select „Forager‟ item, right click on the „information‟ panel

on top right and click on „Add…‟.

Enter info_energy as name:

Building a Cormas model from scratch step by step: the ECEC model

47

Then change the code with:

(As the value of energy may be a long float, it is better to round it for display facility)

Tracking: You can track the foragers by selecting the menu Display  track  Forager :

This option is also available from the contextual menu of an entity.

You can set the length of the track from the

grid menu: Option  set track length,

then by choosing the length

9.3. Executable activity diagram editor to modify the agents’ behavior

A new tool was created that enables the drawing of simple activity diagrams and to execute

them without any need for translation into code. Indeed, this diagram editor allows the

creation of new activity diagrams (or re-opening formers) that are interpreted “on the fly” by

Cormas. Users can modify the simulator while it is running, without stopping or restarting the

simulation.

Building a Cormas model from scratch step by step: the ECEC model

48

To create a new diagram, right click on Forager class from “Entities” interface

Then click on “Create new diagram” button:

For simplicity sake and user friendliness, the elements available on the diagram editor are

restricted to initial and final nodes, simple activity nodes (without parameters nor ability to

handle an activity output), transitions and decision points. It does not include more

sophisticated features such as swimlane, iteration and concurrency notations. The purpose of

this executable editor is to facilitate understanding and usability so that non-computer

engineers may use it.

Building a Cormas model from scratch step by step: the ECEC model

49

The decision points do not comply exactly with UML notation but are rather like the old flow

chart diagrams for which the question is written into the diamond and from which only two

transitions emerge indicating the fulfillment (true) or the negative answer (false).

By selecting an activity node or a decision point on the tool bar, you can add a new element

on the diagram. Thereafter, you can choose the operation to be performed by this element.

Each element proposes a drop-down menu (right click) to display an activity setter from

which you may choose the method that will be associated with the selected node.

Two examples of activity setter, for activity node (orange) and for decision point (yellow):

Building a Cormas model from scratch step by step: the ECEC model

50

The activity setter displays a list of methods belonging to the target class (i.e. Forager). This

list is set up automatically by Cormas that inspects all the simple methods defined within the

class and its super-classes
2
. By clicking on a name, the purpose of the associated method is

displayed. You may also inspect the method‟s code by right clicking on it.

As you can see, there is plenty methods for the activity setter (the list starts with the Forager‟s

methods), but very few for the Decision node (#isDead and #isSituated which are generic

methods of Agent). Thus, we need to add new questions for the ECEC model, such as

#isEnergyHigh (in order to reproduce) and #isEnergyTooLow to test if the forager will die.

These methods have to be written in the testing protocol in order to be display by the

Decision point setter.

Open a browser on the Forager class (double click on Forager in the “entities” interface), and

create a new protocol called “testing” (see Figure 11, p. 17). Then write the follow methods:

Now, you can finalize the activity diagram. Obviously, from a decision point, you will create

two transitions: one for which the answer is true (green) and one for false (red).

When it is done, you must save it by clicking on the “Install” button. Enter step as the name

of the operation. The original #step method (previously defined, see chapter 3.9, Coding the

“step” method of the forager agent, p. 23) will be overwritten.

2
 Thanks to Smalltalk code organization in protocols (also called “categories” for which the included

methods share a close semantic), the methods of a decision point are collected by Cormas when

inspecting the “testing” protocol of the target class and its super classes.

Building a Cormas model from scratch step by step: the ECEC model

51

The design is incremental: saving a new diagram generates a new method of the agent that is

immediately available and can be called in turn (future activity setter will display this new

method name). A right-click on an activity or a decision point opens either a code editor

targeting the selected operation, or another diagram editor displaying the previously saved

activities.

When saving the new diagram (“Install” button), Cormas checks if it is coherent, then

generates two operations in the target class:

- one to store the diagram: #activity_step, defined at the class level

- and one to execute it (the new #step method):

An activity diagram is not compiled into programming language but is directly interpreted by

the simulation, without an intermediate stage. In other words, the new activity diagram is

saved as part of the source code of the ABM. As it belongs to the executable code, it can be

reopened at anytime, modified and performed without the requirement of developer skills.

Building a Cormas model from scratch step by step: the ECEC model

52

Thus, from basic operations already defined by the modeler, anyone may generate new upper

level behavior without any programming skills. For example, you can modify the behavior of

the Restrained foragers: open an editor by right clicking on Restrained class from “Entities”

interface and select Activity diagram. Choose the step diagram and modify it as following:

Thus by running a simulation, we observe that the Restrained population does not collapse

any more.

Building a Cormas model from scratch step by step: the ECEC model

53

To remove the modified diagram, right click on Restrained class from “Entities” interface,

then select Edit  Activity Diagram, then click on the “Remove” button.

You can save the model because this is its last version for the scope of this tutorial.

10. Analyzing the model

We present now the ways to conduct sensitivity analysis with Cormas. Analyzing is an

important part of the modeling activity and should not be forgotten. It helps to reveal and

correct bugs and points of failure, but above all, it provides to the one who conducts this

analysis, a better understanding of the behavior of the model. As Jean Piaget said, “we only

know an object when acting on it and transforming it”.

Choice of indicators (probes): An important starting point is the choice of the probes to

collect. Indeed, one can study an ABM at two distinct levels of analysis: either globally,

giving for example the number of agents in a population or the date of collapse, or at the

individual level (energy of an agent). Generally, sensitivity analyzes are limited to the global

level. This seems already sufficient since it needs a lot of time.

The studied indicator depends also on how it is collected. For example, recording the average

of a probe over the whole simulation can hide important information about the sensitivity of

the model. For the present case, the previous simulations of ECEC show that there is often a

first crisis for both populations of foragers. After that, one population often disappears while

the other one is fluctuating. So rather to record the size of both populations at time 400 for

example, it is better to record the average size between step 150 (after the first crisis) and 400.

Cormas don't propose analyze tools; it just allows to launch many simulations according to

parameters values and to export the data of the simulations in different file formats: CSV

(comma-separated values where the data (numbers and text) are stored in plain-text form) or

Excel files. You can then analyze your data with your favorite software…

10.1. Simple stochastic analysis

As ECEC is a stochastic model (there is randomness for initialization, for mixing the agent

order for activation an for the #move process), we can conduct a simple analysis. On Cormas

main menu, select: Simulation  Analysis  Simple Stochastic Analysis:

Building a Cormas model from scratch step by step: the ECEC model

54

Select the output format of the files: CSV or Excel (Be careful, on Mac, the connection of

VW with Excel doesn‟t work, and MSAccess is not ready) and record as “averaged over

repetitions”. Then “Apply”.

On the new interface that pops up, set “the folder for output files” by clicking on the

appropriate button. By default, Cormas proposes a folder name starting with the analysis type

and the current day. The folder will be created into ECEC/data/. When ok, click on “Run

analysis” button. To speed up the simulation, it is recommended to close the grid displaying

the agents and the probes‟ interface displaying the curves. 3 files will be created:

- One (analysisSettings.csv) containing the settings of the analysis: you can run this

analysis again by reopening Simple Stochastic Analysis interface and select File  Load

analysis settings.

Building a Cormas model from scratch step by step: the ECEC model

55

- And two (AveragedTimeSeries_unrestrainedSize.csv and

AveragedTimeSeries_unrestrainedSize.csv) containing the data of the analysis.

Thus, into Excel (or other spreadsheet application), you get the following graphic for which

the curves are smoother than for one simulation (see first output graph, p. 38). This is due to

the “averaged over repetitions” format chosen for the output: Cormas calculates the averaged

probe (restrained size for instance) by taking for each step the average value of over the 100

repetitions.

10.2. Individual signature of parameters

The individual signature of a parameter is usefull to know its influence on an indicator (or a

probe). By fixing the other parameters at their reference value, we collect the outputs of the

selected probes by changing for each simulation the value of one parameter. For these

analyzes, it is best to choose a wide range of variation. This gives a graph showing the output

values according to the parameter whose sensitivity is given by the slope of the curve. A

straight line, parallel to the X axis (the parameter axis) indicates a lack of sensitivity of the

indicator to this parameter. For stochastic models, simulations must be repeated for each

value of the parameter. Statistically, the smaller the increment step is, the less we need to

repeat the simulations. Thus, if you decide to run 100 simulations, it is best to conduct the

analysis of 50 parameter values, repeating only twice each value, rather than the reverse.

To conduct such OAT analysis (One factor At a Time), you can use either “Sequential

values”, “Predefined by list of values” or “Monte Carlo”:

Figure 14: ECEC outputs averaged over 100 repetitions

Building a Cormas model from scratch step by step: the ECEC model

56

Let‟s say we will use a OAT Sequential values analysis.

Select the init and control methods (#homogeneousEnv and #step:). Enter the final step (400),

the number of repetitions (2, for example), select the output file format (do not use Excel for

Mac), the format of the probes (or example, „average on period…‟ [150 to 400] and the

probes (restrainedSize, unrestrainedSize and vegetationBiomass). Then enter the values of the

interval for each parameter to be analysed. Example: the attribute r of VegetationUnit can be

analyzed from 0 („Start value’) to 1 („Final value’) with an „Increment’ step of 0.05.

The following figures show some results of this kind of analysis:

Building a Cormas model from scratch step by step: the ECEC model

57

In presence of Unrestrained, the parameter r does not affect the dynamics of the Restrained.

But the size of the population of Unrestrained increases almost linearly with r.

Population responses to the K parameter is a bit more complicated:

When K is smaller than 5, there is a rapid increase in Unrestrained size at and systematic

exclusion of small.

When K is in the range [5, 40], the average size of Unrestrained stabilized at around 23

agents. But when K tends towards the upper part of this interval, the collapse of Unrestrained

is frequent. For these values, the Restrained are regularly excluded, but for some few cases,

they may survive, with an increase of the population size up to 140 agents.

Beyond 40, both populations always collapse. Despite similar vegetation dynamics at the

beginning of the simulation (similar rate of increase in early growth then slowdown for small

values of K), the environment reached a first peak of biomass, which varies according to K

(3000 or 6000 when K = 10 or 40). The height of the first peak allows a rapid increase in

population. When this peak is moderately high, the population size remains modest (65

Unrestraineds, K = 10). But if this peak is high, the population grows quickly (up to 200

agents for K = 40). In this case, the first crisis is very violent and leads to extinction of the

populations.

Here also the model answers are not simple. A catabolic rate of the Restrained higher than 2

(baseline) causes the systematic exclusion of the Restrained. But for values lower than 2,

these agents become competitive. For a rate close to 1.5, both populations coexist frequently.

Then, the lower this rate is, the more the Restrained population is high. In this case, they

Building a Cormas model from scratch step by step: the ECEC model

58

reduce the resources for the Unrestrained who are systematically excluded when the rate is

below 1.

The signature of the Restrained‟ threshold fertility shows two very distinct phases. Above 48,

the Restrained are excluded and they do not affect the Unrestrained. For threshold values

above 100, there is nevertheless few cases of non-exclusion: Restrained agents do not

consume energy to reproduce then can more easily survive. But this stable situation suddenly

changes when the threshold fertility falls below 48. Suddenly the Restrained become

competitive and rapidly invade the space. With an increase of the population size, the

Restrained are struggling the Unrestrained.

The higher the harvest rate of the Restrained (initially set at 50%) is close to that of the

Unrestrained, the more the conflict between both populations increases with the balance of the

forces.

The signature of Unrestrained‟s harvest rate is more original. For values greater than 40%, the

size of Unrestrained increases. But from a maximum rate of 56%, the size of this population

gradually decreases. Compared to the Restrained harvest rate (50%), it is better thus to have a

rate just higher (between 53% and 65%), because upper rates reduce the size of their

population. So much that for very high levels (close to the baseline, 99%), the population may

collapse by itself (the only case of elimination of oth populations happens for very high rates).

10.3. Sorting the sensitivity of the model to parameters

This analysis seeks to describe the impact of the parameters on the model. It is based on the

principle of calculating the partial derivatives of the output functions in relation to the input

Building a Cormas model from scratch step by step: the ECEC model

59

variables. More formally, we express the sensitivity Si,j,t of a parameter pi as the partial

derivative of the probe j at time t, relatively to pi:



S
i, j ,t


dProbe

j, t

Param
i

This formula of sensitivity (also called local sensitivity) can only be applied to continuous and

differentiable parameters and output values. For ABM, numerical approximations are

necessary. It consists in varying the model inputs on a narrow range around a reference value.



S Probe
j / Param i

 
ln Probe j / Param i

mod if  ln Probe j / Param i

stand

ln Param
i

modif
  ln Param

i

stand

Cormas proposes a new tool to facilitate this analysis. On menu, select Simulation  Analysis

 OAT Sensitivity Analysis  Classify Parameters. In the interface, similar to the previous

one, select the init and control methods (#homogeneousEnv and #step:). Enter the final step

(400), the number of repetitions (100), select the output format, the format of the probes (for

example, „average on period…‟ [150 to 400]) and the probes (restrainedSize,

unrestrainedSize and vegetationBiomass). Then enter the new value for each parameter. It

must be close to the reference value, around 10%. By clicking on „Set’ button, Cormas

calculates these new values. It uses the default value to determine if a given parameter must

be a float or an integer. For instance, -15% applied to restrainedInitialNumber won‟t give 9.5

but a rounded value (9). A similar calculus is done for K (10) and catabolicRate (2). So,

before Apply, check the list and change the necessary parameter‟s new values (for instance,

change 2 to 1.8 for catabolicRate as this parameter can be a float).

Building a Cormas model from scratch step by step: the ECEC model

60

As explained by a pop-up message, the analysis will be performed in 2 sessions. A first one

(100 simulations) to store the output files of the reference simulations. Then (automatically), a

second one to run the simulations for the modified parameters.

If the reference files are already available (due to a previous analysis), you can reuse them.

For that, set the “folder for the output files” to the target folder.

When the complete analysis is done (may take a moment!), you should get these kinds of

results (in Excel):

Building a Cormas model from scratch step by step: the ECEC model

61

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
U

n
re

st
ra

in
ed

 c
la

ss
_h

ar
ve

st
R

at
e

U
n

re
st

ra
in

ed

cl
as

s_
fe

rt
ili

ty
Th

re
sh

o
ld

V
eg

et
at

io
n

U
n

it
 c

la
ss

_K

R
es

tr
ai

n
ed

 c
la

ss
_h

ar
ve

st
R

at
e

EC
EC

_u
n

re
st

ra
in

ed
In

it
ia

lN
u

m
b

e
r

EC
EC

_r
es

tr
ai

n
ed

In
it

ia
lN

u
m

b
er

V
eg

et
at

io
n

U
n

it
 c

la
ss

_r

R
es

tr
ai

n
ed

_e
n

er
gy

R
es

tr
ai

n
ed

cl

as
s_

fe
rt

ili
ty

Th
re

sh
o

ld

U
n

re
st

ra
in

ed
_e

n
er

gy

U
n

re
st

ra
in

ed

cl
as

s_
ca

ta
b

o
lic

R
at

e

R
es

tr
ai

n
ed

 c
la

ss
_c

at
ab

o
lic

R
at

e

Sensitivity of vegetationBiomass

0

1

2

3

4

5

6

U
n

re
st

ra
in

ed
 c

la
ss

_h
ar

ve
st

R
at

e

V
eg

et
at

io
n

U
n

it
 c

la
ss

_r

U
n

re
st

ra
in

ed

cl
as

s_
fe

rt
ili

ty
Th

re
sh

o
ld

V
eg

et
at

io
n

U
n

it
 c

la
ss

_K

EC
EC

_u
n

re
st

ra
in

ed
In

it
ia

lN
u

m
b

e
r

R
es

tr
ai

n
ed

 c
la

ss
_h

ar
ve

st
R

at
e

R
es

tr
ai

n
ed

_e
n

er
gy

R
es

tr
ai

n
ed

cl

as
s_

fe
rt

ili
ty

Th
re

sh
o

ld

EC
EC

_r
es

tr
ai

n
ed

In
it

ia
lN

u
m

b
er

U
n

re
st

ra
in

ed

cl
as

s_
ca

ta
b

o
lic

R
at

e

R
es

tr
ai

n
ed

 c
la

ss
_c

at
ab

o
lic

R
at

e

U
n

re
st

ra
in

ed
_e

n
er

gy

Sensitivity of unrestrainedSize

Building a Cormas model from scratch step by step: the ECEC model

62

By using the distance formula: 
j

2
j,itoti, SS , you can ordered the global sensibility of the

parameters, as following:

0

1

2

3

4

5

6

U
n

re
st

ra
in

ed

cl
as

s_
fe

rt
ili

ty
Th

re
sh

o
ld

R
es

tr
ai

n
ed

 c
la

ss
_h

ar
ve

st
R

at
e

R
es

tr
ai

n
ed

cl

as
s_

fe
rt

ili
ty

Th
re

sh
o

ld

V
eg

et
at

io
n

U
n

it
 c

la
ss

_K

R
es

tr
ai

n
ed

_e
n

er
gy

V
eg

et
at

io
n

U
n

it
 c

la
ss

_r

U
n

re
st

ra
in

ed
_e

n
er

gy

EC
EC

_u
n

re
st

ra
in

ed
In

it
ia

lN
u

m
b

e
r

R
es

tr
ai

n
ed

 c
la

ss
_c

at
ab

o
lic

R
at

e

U
n

re
st

ra
in

ed
 c

la
ss

_h
ar

ve
st

R
at

e

EC
EC

_r
es

tr
ai

n
ed

In
it

ia
lN

u
m

b
er

U
n

re
st

ra
in

ed

cl
as

s_
ca

ta
b

o
lic

R
at

e

Sensitivity of restrainedSize

0

1

2

3

4

5

6

U
n

re
st

ra
in

ed

cl
as

s_
fe

rt
ili

ty
Th

re
sh

o
ld

U
n

re
st

ra
in

ed
 c

la
ss

_h
ar

ve
st

R
at

e

R
es

tr
ai

n
ed

 c
la

ss
_h

ar
ve

st
R

at
e

R
es

tr
ai

n
ed

cl

as
s_

fe
rt

ili
ty

Th
re

sh
o

ld

V
eg

et
at

io
n

U
n

it
 c

la
ss

_K

V
eg

et
at

io
n

U
n

it
 c

la
ss

_r

R
es

tr
ai

n
ed

_e
n

er
gy

EC
EC

_u
n

re
st

ra
in

ed
In

it
ia

lN
u

m
b

e
r

U
n

re
st

ra
in

ed
_e

n
er

gy

EC
EC

_r
es

tr
ai

n
ed

In
it

ia
lN

u
m

b
er

R
es

tr
ai

n
ed

 c
la

ss
_c

at
ab

o
lic

R
at

e

U
n

re
st

ra
in

ed

cl
as

s_
ca

ta
b

o
lic

R
at

e

Global sensitivity (distance)

